DNA REPLICATION

Old

T::::A-

Old

Dr. Mahesha H B

Professor and Head Department of Sericulture Yuvaraja's College University of Mysore, India

22 December 2021

DNA replication

The process of making an identical copy of a section of duplex (double-stranded) DNA, using existing DNA as a template for the synthesis of new DNA strands.

In humans and other eukaryotes, replication occurs in the cell nucleus.

Possible models of DNA replication

Delbruck suggested that the Watson and Crick model of DNA could theoretically replicate by three modes

22 December 2021

Animation on Messelson and Stahl's Experiment

https://www.youtube.com/watch?v=0e_Zb5e9Bfk

22 December 2021

Major enzymes & Proteins involved in DNA replication

Polymerase I:

Discovered by Arthur Kornberg. 400 molecules/cell; mol. wt. 1,09,000.

- **1.** 5' \rightarrow 3' Polymerization: Synthesis of polymer from monomers 1000 nucleotides / min at 37° C
- 2. 3' \rightarrow 5' Exonuclease activity: Hydrolysis of single nucleotides from the end of a DNA or RNA chain. Functions as proof reader, thus acts in repair synthesis.
- 3. 5' \rightarrow 3' Exonuclease activity: Removes thymine dimers. As moves ahead it cuts off Ribonucleotides (Primer) in front and adds deoxyribonucleotides behind.

Polymerase II:

Single polypeptide chain with Mol. Wt 90,000. 40 mol / cell. 50 nucleotides/ min.

- **1.** 5' \rightarrow 3' Polymerization: 50 nucleotides / min at 37° C
- 2. $3' \rightarrow 5'$ Exonuclease: involves in editing in repair replication of UV damage. Also, it can elongate OKAZAKI fragments in absence of Pol I.

Very complex enzyme. It associated with 9 other protein in its active form.

Core enzyme: The smallest aggregate having function of polymerase.

 $5^{\prime} \rightarrow 3^{\prime}$ Polymerization: 15,000-60,000 nucleotides / min at 37° C

DNA Gyrase (Topoisomerase II):

Sliding Clamps:

Sliding Clamps allows DNA polymerase to remain attached to their DNA stretches of DNA efficiently without falling off the template DNA **Dna A (Origin Binding Protein):** binds to origin of replication just before initiation

Dna B (Helicase): Helicase unwinds DNA strands using ATP energy

Single strand Binding Protein: Binds to & stabilizes unwound single stranded DNA

ori

Dna C: Forms a complex with helicase to load & function on DNA template.

Mechanism of Replication in Prokayrotes

REPLICOSOME: The unit consisting of enzymes, template strand and newly synthesized daughter strand at the replication fork is called replicosome

 $3' \leftarrow < 5'$ Chain Growth from 5' to 3'

In a unidirectional replicating molecule, replication terminates at the origin.

In a bidirectionally replicating molecule, there are two possible modes of termination.

- 1. There is a defined termination sequence
- 2. Two growing points collide and termination occurs

Animation on Mechanism of DNA Replication

https://www.youtube.com/watch?v=TNKWgcFPHqw

Acknowledgements to

INTERNET

FOR PICTURES AND PHOTOGRAPHS

22 December 2021