Estimation of DNA by Diphenylamine method

Dr. Mahesha H B, Yuvaraja's College, Mysore.

Aim: To estimate the concentration of DNA by diphenylamine reaction.

Principle: This is a general reaction given by deoxypentoses. The 2-deoxyribose of DNA, in the presence of acid, is converted to ω -hydroxilevulinic aldehyde, which reacts with diphenylamine to form a blue coloured complex, which can be read at 595 nm.

Requirements:

1. Standard DNA solution- Dissolve calf thymus DNA (200µg/ml) in 1N perchloric acid/buffered saline.

2. Diphenylamine solution- Dissolve 1g of diphenylamine in 100 ml of glacial acetic acid and 2.5 ml of concentrated H_2SO_4 . This solution must be prepared fresh

3. Buffered Saline- 0.5 mol/litre NaCl; 0.015 mol/litre sodium citrate, pH 7.

Procedure:

- 1. Pipette out 0.0, 0.2, 0.4, 0.6, 0.8 and 1 ml of working standard in to the series of labeled test tubes.
- 2. Pipette out 1 ml of the given sample in another test tube.
- 3. Make up the volume to 1 ml in all the test tubes. A tube with 1 ml of distilled water serves as the blank.
- 4. Now add 2 ml of DPA reagent to all the test tubes including the test tubes labeled 'blank' and 'unknown'.
- 5. Mix the contents of the tubes by vortexing / shaking the tubes and incubate on a boiling water bath for 10 min.
- 6. Then cool the contents and record the absorbance at 595 nm against blank.
- 7. Then plot the standard curve by taking concentration of DNA along X-axis and absorbance at 595 nm along Y-axis.
- 8. Then from this standard curve calculate the concentration of DNA in the given sample.

<u>Result</u>: The given unknown sample contains ----µg DNA/ml.

Volume of standard (200 µg/ml) DNA (ml)	Volume of distilled water (ml)	Concent ration of DNA (µg)	Volume of DPA reagent (ml)	Incuba te in boiling water bath	A595	Standard Curve f
0.0	1.0	00	2		0.00	202 203
0.2	0.8	40	2	for		▼ 0.2 0.1
0.4	0.6	80	2	10		0
0.6	0.4	120	2	Min &		C
0.8	0.2	160	2	Cool		
1.0	0.0	200	2			
1.0 Unknown	0.0	To be Estimate d	2			

Observations and Calculations

