Experiment No. 9: Estimation of Haemolymph Proteins.

Aim: To estimate the haemolymph proteins using Lowry's method.

Principle: The –CO-NH- bond (peptide) in polypeptide chain reacts with copper sulphate in an alkaline medium to give a blue colored complex. In addition, tyrosine and tryptophan residues of protein cause reduction of the phosphomolybdate and phosphotungstate components of the Folin-Ciocalteau reagent to give bluish products which contribute towards enhancing the sensitivity of this method.

Reagents Required:

- 1. Reagent A: 2% sodium carbonate in 0.1 N sodium hydroxide.
- **2. Reagent B:** 0.5% copper sulphate (CuSO₄.5H₂O) in 1% potassium sodium tartarate. Prepare fresh by mixing stock solutions.
- **3. Reagent C (Alkaline copper solution):** Mix 50 ml of reagent A and 1 ml of reagent B prior to use.
- **4. Reagent D (Diluted Folin's reagent):** Dilute Folin-Ciocalteau reagent with an equal volume of 0.1 N NaOH
- **5.** *Standard:* Dissolve 50 mg BSA in 50 ml of 0.1 N NaOH in a volumetric flask. Take 10ml of this stock standard and dilute to 50 ml in another flask for working standard solution. One ml of this solution contains 200 µg protein.
- **6. Haemolymph Sample:** Dilute the haemolymph 250 times with distilled water containing 1mM thiourea.

Apparatus and Glass wares required: Test tubes, Pipettes, Colorimeter, *etc.*,

Procedure:

- 1. Pipette out 0.0, 0.2, 0.4, 0.6, 0.8 and 1 ml of working standard in to the series of labeled test tubes.
- 2. Pipette out 1 ml of the sample in another test tube.
- 3. Make up the volume to 1 ml in all the test tubes. A tube with 1 ml of distilled water serves as the blank.
- 4. Now add 5 ml of reagent C to all the test tubes including the test tubes labeled 'blank' and 'sample' (diluted haemolymph).
- 5. Mix the contents of the tubes by vortexing / shaking the tubes and allow to stand for 10 min.

- 6. Then add 0.5 ml of reagent D rapidly with immediate mixing and incubate at room temperature in the dark for 30 min.
- 7. Now record the absorbance at 660 nm against blank.
- 8. Then plot the standard curve by taking concentration of protein along X-axis and absorbance at 660 nm along Y-axis. *For drawing the standard graph please refer last page figure 1.*
- 9. Now from this standard curve calculate the concentration of protein in the given sample.

Observations and Calculations:

Volume of standard BSA (ml)	Volume of distilled Water (ml)	Concentration of protein (µg)	Volume of reagent C (ml)	Incubate at room	Volume of reagent D (ml)	Incubate at dark room temperatu re for 30 min	A ₆₆₀
0.0	1.0	00	5		0.5		0.00
0.2	0.8	40	5	temperatu	-		
0.4	0.6	80	5	re for 10 min	0.5		
0.6	0.4	120	5		0.5		
0.8	0.2	160	5		0.5		
1.0	0.0	200	5		0.5		
1.0 ml of sample	0.0	To be estimated			0.5		

Result: The given haemolymph sample contains ----µg protein/ml.
